167 research outputs found

    Engineering education for a sustainable future

    Get PDF
    En el context social global actual, en el què un nombre considerable de senyals inequívocs indiquen que la nostra societat està contribuint al col·lapse del planeta, "és necessari un nou tipus d'enginyer, un enginyer que sigui plenament conscient del que està succeint a la societat i que tingui les habilitats necessàries per fer front als aspectes socials de les tecnologies" (De Graaff et al., 2001). L'educació superior és un instrument essencial per superar els reptes del món actual amb èxit i per formar ciutadans capaços de construir una societat més justa i oberta (Álvarez, 2000). Per tant, les institucions d'educació superior tenen la responsabilitat d'educar els futurs titulats amb la finalitat que adquireixin una visió moral i ètica i assoleixin els coneixements tècnics necessaris per assegurar la qualitat de vida per a les generacions futures (Corcoran et al, 2002). Amb l'objectiu d'assegurar que els futurs titulats siguin enginyers sostenibles, tres qüestions fonamentals han guiat aquesta investigació: Quines competències en sostenibilitat ha d'adquirir un enginyer a la universitat? Com poden aquestes competències ser adquirides d'una manera eficient? Quina estructura educacional és més eficaç per facilitar els processos d'aprenentatge requerits? La primera pregunta es refereix a "Què?", és a dir, a quines competències relacionades amb la sostenibilitat (coneixements, habilitats i actituds) ha de tenir un enginyer que es gradua en el segle 21. La segona qüestió es refereix a "Com?" i es centra en com els processos educatius poden fer possible l'aprenentatge de les competències en sostenibilitat a través de les estratègies pedagògiques adequades. L'última pregunta es refereix a "On?" des de la perspectiva de quin pla d'estudis i quina estructura organitzativa són necessaris per poder aplicar la didàctica més òptima per graduar enginyers amb competències en sostenibilitat. Aquesta recerca s'ha enfocat des d'una vessant teòrico-pràctica en què tant les estratègies pedagògiques com les competències en sostenibilitat s'han estudiat en paral·lel. Amb aquesta orientació, s'ha dissenyat una eina d'avaluació que mesura aquests dos aspectes i la seva relació, i que s'ha aplicat a 10 casos d'estudi formats per cursos de sostenibilitat de 5 universitats tecnològiques europees, en els quals hi han participat, en total, més de 500 estudiants. Per completar l'estudi, s'ha analitzat la introducció de la sostenibilitat en els plans d'estudi de 17 universitats tecnològiques, i s'han entrevistat 45 experts en educació de sostenibilitat en l'enginyeria. En relació a les preguntes clau, els resultats de la investigació han estat els següents: En el moment de titular-se, l'estudiantat d'enginyeria hauria d'haver adquirit les competències següents: pensament crític, pensament sistèmic, ser capaços de treballar en un entorn transdisciplinari, i tenir valors en consonància amb el paradigma de la sostenibilitat. D'altra banda, d'acord amb els requisits de l'EEES, també cal establir un marc comú per definir, descriure i avaluar les competències en sostenibilitat a nivell europeu. Després d'haver realitzat un curs en sostenibilitat, la majoria de l'estudiantat segueix prioritzant el rol tecnològic de la sostenibilitat, pel que fa a la tecnologia com la solució als problemes ambientals, sense gairebé considerar els aspectes socials. Per tant, els cursos sobre sostenibilitat han d'emfatitzar més la part social i institucional de la sostenibilitat. Existeix una relació directa entre l'aprenentatge de la transdisciplinarietat i el pensament sistèmic. L'aprenentatge cognitiu de l'estudiantat augmenta, a mida que s'aplica una pedagogia més orientada a la comunitat i més constructiva. Així, l'aprenentatge cognitiu de la sostenibilitat també millora a través d'una l'educació activa, experiencial i multimetodològica. A més a més, en l'aprenentatge de la sostenibilitat, el paper del professorat és molt important pel que fa a l'aprenentatge implícit de valors, principis i pensament crític associats a la sostenibilitat. Les universitats tecnològiques actualment implementen l'educació en sostenibilitat a través de quatre estratègies principals: un curs específic, una especialització en sostenibilitat, un màster en sostenibilitat o en tecnologies sostenibles, i la integració del desenvolupament sostenible en tots els cursos. No obstant això, la principal barrera per a la integració de la sostenibilitat en tots els cursos és la manca de comprensió del terme per part del professorat. L’enfocament individual" (Peet et al., 2004) ha demostrat ser un bon sistema per superar aquesta barrera. Hi ha una necessitat clara de lideratge per part de l'equip de govern de les universitats en el procés de canvi cap a una educació en sostenibilitat. Aquest lideratge ha de promoure l'enfocament de baix a dalt. Els processos d'educació en sostenibilitat es reforcen quan aquests no només integren l'educació, sinó també totes les altres àrees clau d'activitat de la universitat: recerca, gestió i relació amb la societat. En breu, l'estructura d'aquesta tesi és la següent. El capítol 1 introdueix el plantejament de la recerca. El capítol 2 revisa l'estat de l'art i la literatura en relació a les competències que els enginyers han de tenir quan es graduen. A continuació, el capítol 3 descriu les estratègies pedagògiques per al desenvolupament sostenible i les analitza des d'un punt de vista teòric i metodològic presentant els avantatges i desavantatges de les més utilitzades en l'ensenyament d'enginyeria El capítol 4 presenta les estructures curriculars que han de catalitzar el procés d'aprenentatge en sostenibilitat. El capítol 5 desenvolupa el marc conceptual de la recerca, les propostes metodològiques de la investigació i els casos d'estudi analitzats. El capítol 6 avalua comparativament les competències en sostenibilitat definides en tres universitats tecnològiques que són líders europeus en sostenibilitat. El Capítol 7 introdueix el marc metodològic per a l'avaluació de l'aprenentatge cognitiu en sostenibilitat del estudiantat. Aquesta metodologia s'aplica en el capítol 8 als 10 cursos de sostenibilitat impartits en 5 universitats tecnològiques europees, que conformen els casos d'estudi d'aquesta recerca. A partir de les 45 entrevistes realitzades a experts en sostenibilitat provinents de 17 universitats tecnològiques europees, el capítol 9 estudia les millors pràctiques en pedagogia per a l'aprenentatge de la sostenibilitat i el capítol 10 examina l'estructura curricular que més facilita l'aprenentatge en sostenibilitat a les universitats tecnològiques. En el Capítol 11 es comparen els resultats obtinguts en els diferents casos d'estudi i s'avaluen les propostes plantejades en el capítol 1. Finalment, el capítol 12 planteja les conclusions de la recerca i algunes recomanacions per a les institucions d'educació superior tecnològiques.In today's world social context, in which a considerable number of contrasting signs reveal that our society is currently contributing to the planet's collapse, "a new kind of engineer is needed, an engineer who is fully aware of what is going on in society and who has the skills to deal with societal aspects of technologies" (DeGraaff et al., 2001).Higher education is the essential instrument to overcome the current world challenges and to train citizens able to build a more fair and open society (Alvarez, 2000). Thus higher education institutions have the responsibility to educate graduates who have achieved an ethical moral vision and the necessary technical knowledge to ensure the quality of life for future generations (Corcoran et al, 2002).In relation to graduating sustainable engineers, three main questions have been developed to guide this research:1. Which Sustainability (SD) competences must an engineer obtain at university?2. How can these competences be acquired efficiently?3. Which education structure is more effective for the required learning processes?The first main question is a "What" question, and focuses on which competences (knowledge/understanding, skills/abilities and attitudes) an engineer graduating in the 21st century should have in relation to SD. The second main question is a "How" question and focuses on how can the education processes make this learning achievable through the proper pedagogical strategies. The last main question is a "Where" question and looksat the perspective of the curriculum and the organizational structure needed to apply the optimal didactics to achieve the goal of graduating sustainable engineers.The focus of this research requires a theoretical‐practical approach in which both pedagogical strategies and SD competences are studied in parallel. An assessment tool that measures the two subjects and their relationship is developed and case studies are run in 10 SD courses at 5 European technological universities, where nearly 500 students have participated. Moreover, the different approaches to introduce SD in thecurriculum of 17 technological universities are analysed, and 45 experts on teaching SD to engineering students have been interviewed.In relation to the key questions, the findings of this research are the following.When graduating the engineering students should have acquired the following SD competences: critical thinking, systemic thinking, an ability to work in transdisciplinary frameworks, and to have values consistent with the sustainability paradigm. Moreover, following the requirements of the EHEA, a common framework to define, describe and evaluate SD competences at European level is needed.Most students, after taking a course on SD, highlight the technological role of sustainability in terms of technology as the solution to environmental problems. Therefore SD courses need to place more emphasis on the social/institutional side of sustainability.There is a direct relationship between transdisciplinary and systemic thinking learning.Students achieve better cognitive learning as more community‐oriented and constructive‐learning pedagogies are applied. Multi‐methodological experiential active learning education increases cognitive learning of sustainability. In addition, the role of the teacher is very important for SD learning in terms of implicit learning of sustainability values, principles and critical thinking.There are four main strategies to increase EESD in universities: a specific SD course, a minor/specialization in SD, a Master on SD or Sustainable Technologies and the embedment of SD in all courses. Nevertheless the main barrier to embedding SD in all courses is the lack of comprehension to SD within the faculty. Theindividual approach (Peet et al., 2004) has shown to be successful to overcome this barrier.There is a need of clear top‐down leadership in the ESD process, which must promote the bottom‐upapproach. Additionally, ESD processes are reinforced when they encompass not only education but also all the key areas of the university: research, management, and society outreach.This thesis is organised as follows. The introduction in chapter 1 is followed by the state of the art and literature review in competences that engineers should have when graduating in chapter 2. Chapter 3 introduces the pedagogical strategies for SD and develops a theoretical and methodological exploration ofthese strategies, which presents the pros & cons and learning outcomes of the most common pedagogical strategies in engineering. Chapter 4 describes the curriculum structures that catalyse the process of sustainable education. Chapter 5 presents the development of the conceptual research framework,propositions and case studies research methodologies. A comparative SD competence analysis of three European leading SD technological universities is presented in chapter 6. Chapter 7 introduces the methodology framework to evaluate the knowledge on SD acquired by students; this methodology is laterapplied in chapter 8 to 10 case studies related to SD courses taught in 5 European technological universities.From the results of the interviews with 45 experts from 17 European technological universities, chapter 9 analyses the best pedagogical practices for SD learning and chapter 10 analyses the curriculum structure thatmost facilitates the introduction of SD learning in technological universities. Chapter 11 compares the different cases analyzed and evaluates the propositions developed in chapter 1. Finally, in chapter 12 conclusions are drawn and recommendations for technological higher education institutions are provided.Postprint (published version

    The EDINSOST project: improving sustainability education in spanish higher education

    Get PDF
    The EDINSOST R+D+i “Society Challenges” Project, funded by the Spanish Ministry of Economy and Competitiveness and the Spanish Ministry of Science, Innovation and Universities under the research challenge in the field of social change and innovation, aims to contribute to the improvement of social challenges across the (1) Spanish Strategy for Science, Technology and Innovation, (2) the State Plan of Scientific and Technical Research and Innovation, and (3) the European 2020 Strategy. The research is both highly multidisciplinary and contextualized and is applied in Ten Spanish Universities working together in the “Curriculum sustainability" group of the CRUE Sectorial Commission of Sustainability. The goal of this group is to create synergies and action frameworks agreed at a national level. This is an area of research action whose lack of common criteria for integrating sustainability competencies, learning processes and assessment hinders their achievement. To meet this challenge, frameworks and processes have been designed to facilitate the integration of sustainability into the university curriculum holistically through mapping and validation of pedagogical practices and the diagnosis of the state of Spanish universities, for which building materials for teaching and learning sustainability competencies have been developed. The project objectives and results are focused on: 1) Defining the map of sustainability competencies of the university degrees involved in the project, and establishing the framework to facilitate their integration in a holistic manner; 2) validating teaching strategies for the acquisition of sustainability competencies from a constructivist and community-oriented pedagogical approach; 3) diagnosing the state of faculty sustainability training needs and developing and pilot training proposals; and 4) diagnosing the state of learning of sustainability competencies in university students as well as preparing and piloting training proposals. The research methodology has an interpretive focus and uses quantitative and qualitative techniques to cover a population with three impact levels. Firstly, Bachelor and Master Degrees that integrate the three pillars of sustainability (environmental, social and economic). Secondly, and taking into account their long-term multiplier effect, special emphasis is made on five Bachelor and Master degrees in Education, since these graduates are the future teachers of the next generation of citizens. Finally, seven technological Bachelor Degrees are studied for their great impact on societal challenges.Peer ReviewedPostprint (published version

    Campus Bizia Lab: programa de aprendizaje servicio para la sostenibilidad universitaria a través de la colaboración de personal-profesorado-estudiantes

    Get PDF
    Campus Bizia Lab (Campus Lab) is a programme of the University of the Basque Country and seeks to develop a collaborative process to address sustainability challenges/problems through transdisciplinary approaches involving administrative staff, students and faculty, translating the principles of sustainability into practice. The main aim of the Programme is to create a transdisciplinary community and to change the Campus practices towards sustainability. 2016/17 course has been a pilot experience with 24 Bachelor´s Degree Dissertations (TFG) and 1 Master’s Degree Dissertations (TFM) from 11 Faculties (Engineering, Education, Science, Pharmacy, Economics and business). The challenges addressed in the TFG and TFM dissertations on sustainability have been designed and based on needs analysis in the Campuses with the participation of the staff. They not only provide a return in terms of participants (students, faculty and staff) learning, but also contribute to a more sustainable management of the university itselfPostprint (published version

    International desgin project semester

    Get PDF
    Peer Reviewe

    Tecnologia i sostenibilitat. L'experiència de 7 anys d'una assignatura d'introducció a la sostenibilitat a la UPC

    Get PDF
    Presentació sobre la realització de l'assignatura ALE “Medi ambient i tecnologia. Educació ambiental a l’enginyeria”, dissenyada per la Càtedra Unesco de Sostenibilitat de la UPC. Actualment aquesta assignatura es denomina “Tecnologia i Sostenibilitat”.Peer Reviewe

    Economía circular, un cambio de paradigma

    Get PDF
    Objectius de Desenvolupament Sostenible::12 - Producció i Consum ResponsablesPostprint (published version

    Service learning for engineering education for sustainability

    Get PDF
    Sustainability issues are widely recognized as wicked problems, which should not be considered as problems to be solved, but as conditions to be governed. There is a general agreement on the need to reform scientific expertise to deal with sustainability challenges, by developing new ways of knowledge production and decision-making. In that sense, Sterling maintains that the nature of sustainability requires a fundamental change of epistemology and education. Transdisciplinary approaches to knowledge emphasize phenomena complexity, disrupting and transcending epistemological structures to progressively reflect and gain understanding. In relation to engineering education, the Barcelona Declaration highlights the sustainability competences, that engineering students should achieve. The Universitat Politècnica de Catalunya (UPC Barcelona Tech), aware of the new sustainability competences that engineers should have, offers a master degree in Sustainability Science and Technology that trains students to become agents of change for sustainability. Transdisciplinarity (Td) and Service learning (SL) are approaches applied. Learning environment, challenges and lessons learnt when applying such learning approaches are explained in following sections.Postprint (published version

    Transdisciplinarity Action Research workshop for sustainable technology communities

    Get PDF
    The Research Institute for Sustainability Science and Technology under the Master degree in Sustainability Science and Technology organises the course Action Research Workshop on Science and Technology for Sustainability (5 ECTS). The authors have been coordinating the course during the academic years 13/14, 14/15 and 15/16. The purpose of the workshop is to put together civil society organisations, local administrations, students and educators to collaboratively undertake responsible research, using transdisciplinary Action-Research methodologies, to answer questions such as: Who are we researching for? Who profits from our research? What are the impacts of our research? Which methodologies and tools should be used? While dealing with socio-technological sustainability challengesPostprint (published version

    Assessing SDGs‘ learning objectives in Engineering Education. Case study Engineering in Industrial Design and Product Development at UPC Barcelona Tech

    Get PDF
    Research paperEducation for the Sustainable Development Goals (ESDG) in higher education requires a methodology to diagnose its presence in the degrees as a starting phaseto design a desired scenario, where graduates are qualified with the needed SDG competences. The EDINSOST2-SDG project, involving 8 Spanish universities, pursues this transition and sets the framework for this study. This paper shows the methodology and results of diagnosing the presence of sustainability competences and the SDG at the undergraduate engineering degree in Industrial Design and Product Development at the School of Engineering of Vilanova i la Geltrú of the Universitat Politècnica de Catalunya. The methodology can be applied to any engineering degree and synthetases the results through Sustainability maps. The starting point is the Engineering Sustainability Map, from the project EDINSOST2-SDG that states the learning outcomes in relation to Sustainability and SDG that engineering students must master when graduating. From there we build assessment maps of the degree analysed. Map 1: shows the Sustainability learning outcomes. Map 2: shows the SDG based on their learning objectives. These maps allow curriculum designers to verify to what extent Sustainability and SDGs are embedded in the subjects, semesters and in the whole engineering degree.Peer ReviewedObjectius de Desenvolupament Sostenible::4 - Educació de QualitatObjectius de Desenvolupament Sostenible::12 - Producció i Consum ResponsablesPostprint (published version

    Action research workshop for transdisciplinary sustainability science

    Get PDF
    The Research Institute for Sustainability Science and Technology under the Master degree in Sustainability Science and Technology organises the course Action Research Workshop on Science and Technology for Sustainability (5 ECTS). The authors have been coordinating the course during the academic years 13/14, 14/15 and 15/16. The purpose of the workshop is to put together civil society organisations, local administrations, students and educators to collaboratively undertake responsible research, performing transdisciplinary learning environments and by using an action-research framework, to answer questions such as: Who are we researching for? Who profits from our research? What are the impacts of our research? Which methodologies and tools should be used when dealing with sociotechnical sustainability challenges? Students work on real projects, related to local sustainability problems, represented by a community entity (Service learning and Campus Lab). Action research methodology is used with a two-cycle approach. In each real-life project, students, faculty and stakeholders are asked to follow the action-reflexion process of action research projects: Action 1- Jointly defining: Project purpose; Customer and interest; Involved actors; Reflexion 1- Students define: research question, initial situation, needed additional information, action Strategy, Tasks planning and distribution: Action 2 - Items returning and discussing with stakeholders, Reflexion 2 - revising and reformulating. Having now run the workshop three times, we can conclude that: First, students realized the significance of framing an investigation under a research methodological framework that allows bringing research to the community, enhancing transdisciplinarity in any initiative or action in sustainability science. They set out the importance of some topics and the difficulty to hold them. Second, the formulation of the problem became one of the most arduous tasks in the process; difficulties were mainly related to the perception of the problem from distinct community group motivations. Third, interaction and communication with stakeholders and the recognition of their role was problematic as engineering students are not usually trained to work in wicked problems nor accompany stakeholders during the whole process. Finally, it is relevant to highlight that during the process students faced conflict and frustrating situations both within their team and with stakeholders. To help tackle this problem, an Emotional Intelligence module was introduced in the workshop which proved useful in helping students to solve some paralyzing situations, which could otherwise have stopped the progress of the project. We suggest that engineering students need specific training in transdisciplinary research and in conflict resolution, to avoid collapsing in frustration when dealing with real transdisciplinary sustainability transitions.Postprint (author's final draft
    corecore